EFM32
...the world’s most energy friendly microcontrollers
The EFM32 lineup

www.energymicro.com
...the world’s most energy friendly microcontrollers and radios
Comparing the EFM32 performance

<table>
<thead>
<tr>
<th></th>
<th>1 Active 25 MHz @ 3V</th>
<th>2 Reduced processing time</th>
<th>3 Very fast wake-up time</th>
<th>4 Ultra low stand-by current</th>
<th>5 Autonomous peripherals</th>
<th>6 Peripheral Reflex System</th>
<th>7 Well architected Energy Modes</th>
<th>8 Ultra Energy Efficient Peripherals</th>
<th>9 Low Energy Sensor Interface</th>
<th>10 Advanced Energy Monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-bit EFM32TG840F32</td>
<td>150 µA/MHz</td>
<td>2 µs</td>
<td>0.9 µA</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>32-bit STM32L151xx</td>
<td>294 µA/MHz</td>
<td>8 µs</td>
<td>4.5 µA (1.9 µA*)</td>
<td>No</td>
<td>No</td>
<td>Partial</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>32-bit SAM4Lx</td>
<td>218 µA/MHz</td>
<td>5 µs (1.5 µs**)</td>
<td>50.3 µA (6.9 µA*)</td>
<td>Partial</td>
<td>Yes</td>
<td>Partial</td>
<td>Partial</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>32-bit LPC11xxL</td>
<td>150 µA/MHz</td>
<td>TBD</td>
<td>57 µA (6 µA*)</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>16-bit MSP430F543x</td>
<td>226 µA/MHz</td>
<td>5 µs</td>
<td>2.6 µA</td>
<td>Partial</td>
<td>No</td>
<td>Partial</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>16-bit PIC24F16KA102</td>
<td>344 µA/MHz</td>
<td>1 µs (1 ms for PLL)</td>
<td>0.93 µA (0.85 µA*)</td>
<td>No</td>
<td>No</td>
<td>Partial</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

7-Mar-13

* Brown-out detection disabled ** Added consumption in active mode
EFM32 – packed with features

The top 10 EFM32 features

ARM Cortex-M processor

Serial Interfaces
- USART
- UART
- Low Energy UART
- I2C
- USB

Clock Management
- High Freq Crystal Osc
- High Freq RC Osc
- Low Freq Crystal Osc
- Low Freq RC Osc
- Ultra Low Freq RC Osc

Energy Management
- Voltage Regulator
- Voltage Comparator
- Brown-out Detector
- Power-on Reset
- Back-up Power Domain

Security
- AES Accelerator

CPU and Memory
- Memory Protection Unit
- Embedded Trace Macrocell

Peripheral Reflex System
- Security
- Serial Interfaces
- High Freq Crystal Osc
- High Freq RC Osc
- Low Freq Crystal Osc
- Low Freq RC Osc
- Ultra Low Freq RC Osc

Security
- Memory Protection Unit
- Security

Energy Management
- Voltage Regulator
- Voltage Comparator
- Brown-out Detector
- Power-on Reset
- Back-up Power Domain

Security
- AES Accelerator

Security
- Memory Protection Unit
- Security
Peripheral Reflex System
Example – Autonomous Sound Loopback

CPU

TIMER
Overflow @ 44 kHZ

Peripheral Reflex System

Reflex Signals

DMA

ADC

Trigger ADC

DAC

Trigger DAC

Sample DATA

7-Mar-13

www.energymicro.com
Example: Pulse length measurement

Analog input

Reference

+ Analog Comparator

Peripheral Reflex System

Reference

Analog input

Reflex signal

TIMER Count value

Reset & Start

Capture

Reset & Start

Capture
Highly Flexible

Reflex Producers
- ACMP
- ADC
- DAC
- GPIO
- RTC
- BURTC
- TIMER
- LETIMER
- LESENSE
- UART
- USART
- USB
- VCMP

Reflex Consumers
- ADC
- DAC
- TIMER
- LESENSE
- UART
- USART
- PCNT

Reflex signals
Reflex System – Key Benefits

- Save energy by letting peripherals communicate directly while CPU is sleeping
- Predicable timing
- Highly configurable

But why?
Analog to Digital Converter
Analog to Digital Converter

ADC Highlights

• **12-bit @ 1 Msps:** 350 µA
• **12-bit @ 10 ksps:** 63 µA
• Scalable resolution: 16, 12, 8, or 6 bits
• Up to 8 input channels
 • Integrated temperature sensor
• Internal/external references
• Scan/single conversions
• Hardware controlled warmup
• Tailgating
• Differential or Single Ended Input
From AN0021 ADC Appnote

Total Consumption vs. Sampling Frequency

7-Mar-13

www.energymicro.com ... the world’s most energy friendly microcontrollers and radios
ADC – Key Benefits

- Lower total energy when sampling
- Flexible inputs and references
- Less CPU use with HW control

But why?
Flexible Display Drivers
Energy Efficient LCD Controller

LCD Controller highlights:

- Directly driving segment LCD displays
 - G (Up to 4x40 segments)
 - TG (Up to 8x20 segments)
 - LG, GG, WG (Up to 8x36 segments)
- Energy Efficient
 - 550 nA for 4x40
 - 250 nA for 1x40
- Configurable:
 - Contrast
 - Segment blink/Animation
- Integrated voltage booster
TFT Driver

TFT Driver Highlights

- TFT/(AM)OLED displays
 - Up to 16-bit color
- Full video from external memory
 - 0% CPU load
 - 320x240 pixels (QVGA) @ 60 fps
 - 480x320 pixels (HVGA) @ 30 fps
- Supports displays without internal frame buffer
- Accelerated graphics update
 - Scrolling
 - Rectangle copy
 - Alpha blending
 - Bit masking

7-Mar-13
Display Drivers – Key Benefits

- Save energy when driving LCDs
- Full QVGA TFT animations with 0% CPU load
- Save cost with TFT displays without buffer

But why?
Wide Cortex-M Portfolio WITH Energy Friendliness
ARM Cortex-M Processors

Cortex-M highlights
• Industry standard CPU
• Software/tool compatible across M0/M3/M4F
• High performance, low power platform
 • Up to 2.19 CoreMark/MHz
 • As little as 150 µA/MHz in EFM32
• Excellent code density
• DSP options in M4F
240+ Scalable Low Energy EFM32s

- **Software compatible**
- **Pin compatibility within each package**

<table>
<thead>
<tr>
<th>Optional Features</th>
<th>EFM32WG940</th>
<th>EFM32WG942</th>
<th>EFM32WG980</th>
<th>EFM32WG982</th>
<th>EFM32LG990</th>
<th>EFM32LG995</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP with FPU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Software compatible

<table>
<thead>
<tr>
<th>M4F</th>
<th>Wonder</th>
<th>EFM32WG840</th>
<th>EFM32WG880</th>
<th>EFM32WG900</th>
<th>EFM32WG950</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LCD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 16 MCUs
- Flash: 4 - 32
- RAM: 2 - 4

Total 35 MCUs
- Flash: 4 - 32
- RAM: 2 - 4

Total 31 MCUs
- Flash: 16 – 128
- RAM: 8 - 16

Total 60 MCUs
- Flash: 64 – 256
- RAM: 32

Total 60 MCUs
- Flash: 64 – 256
- RAM: 32

Total 40 MCUs
- Flash: 512 – 1024
- RAM: 128
Cortex-M Portfolio—Key Benefits

- Industry standard CPU
- Wide Cortex-M scalability
- Pin/SW compatibility across families
- Energy friendly MCU with up to 1 MB/128 KB memory

But why?
Well Architectured Energy Modes
Well Architectured Energy Modes

EM0 “Run Mode”: 150µA/MHz

EM1 “Sleep Mode”: 45µA/MHz

EM2 “Deep Sleep Mode”: 900nA

RTC, Brown-Out Detection, RAM and CPU retained

2 µs wake-up

EM3 “Stop Mode”: 600nA

Brown-Out Detection, RAM & CPU retained

2 µs wake-up

EM4 “Shutoff Mode”: 20nA

Pin/GPIO Reset

RTC + 512-byte backup memory: 400 nA
EFM32 Peripherals can be used in Ultra Low Power EM2 and EM3: For example DMA can be used in EM2 Mode with the MCU in a 900nA mode!!

<table>
<thead>
<tr>
<th>Feature</th>
<th>EM0¹</th>
<th>EM1²</th>
<th>EM2²</th>
<th>EM3³</th>
<th>EM4⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wakeup time to EM0</td>
<td>-</td>
<td>-</td>
<td>2 µs</td>
<td>2 µs</td>
<td>160 µs</td>
</tr>
<tr>
<td>MCU clock tree</td>
<td>On</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>High frequency peripheral clock trees</td>
<td>On</td>
<td>On</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core voltage regulator</td>
<td>On</td>
<td>On</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>High frequency oscillator</td>
<td>On</td>
<td>On</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(^2 \text{C}) full functionality</td>
<td>On</td>
<td>On</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Low frequency peripheral clock trees</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Low frequency oscillator</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Real Time Counter</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LCD</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LEUART</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LETIMER</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PCNT</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ACMP</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>-</td>
</tr>
<tr>
<td>(^2 \text{C}) receive address recognition</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>-</td>
</tr>
<tr>
<td>Watchdog</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On³</td>
<td>-</td>
</tr>
<tr>
<td>Pin interrupts</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>-</td>
</tr>
<tr>
<td>RAM voltage regulator/RAM retention</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>-</td>
</tr>
<tr>
<td>Brown Out Reset</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>-</td>
</tr>
<tr>
<td>Power On Reset</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>Pin Reset</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On</td>
</tr>
<tr>
<td>GPIO state retention</td>
<td>On</td>
<td>On</td>
<td>On</td>
<td>On³</td>
<td>-</td>
</tr>
<tr>
<td>EM4 Reset Wakeup Request</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>On⁴</td>
</tr>
<tr>
<td>EM4 Reset Wakeup Request</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>On⁴</td>
</tr>
</tbody>
</table>

Table 10.1. EMU Energy Mode Overview

7-Mar-13
Energy Modes—Key Benefits

- Low power consumption
- A lot of peripherals available in lower sleep modes
- 2us wake-up

But why?
Low Energy UART
Low Energy UART

LEUART Highlights
• Up to 2 LEUARTs
• Full UART with 32 kHz clock
• Can operate entirely in EM2(900nA) with DMA
• 150 nA at 9600 baud/s
• DMA support
• Valid wake-up packet
Low Energy UART—Key Benefits

- Stay in Deep Sleep while sending or receiving data
- Save energy by only waking up on specific data

But why?
Hardware AES Acceleration
AES Encryption Accelerator

AES Highlights
• Encryption/decryption
• 128/256-bit keys @ 54/75 cycles
• 20 – 80 times faster than software
• On-the-fly key generation
 • No memory required
• Key buffering in 128-bit mode
 • No reload of key
• DMA support for autonomous cipher modes
• 2.5uA/MHz

How are you? → AES → &G#%5(F

I am fine ← AES ← !T4/#2@2
AES Accelerator – Key Benefits

- Faster encryption
- Save energy when encrypting
- Fully integrated HW saves memory

But why?
3

Back-up Power Domain
Backup Power Domain

Backup Domain Highlights

• Automatic main/backup power switch

• 32-bit Backup RTC
 • Use any LF oscillator

• 512-byte backup register

• **400nA** with RTC and registers

• AN0041 Backup RTC/Power Domain Appnote w/Source Code
Backup Domain – Key Benefits

- Energy Friendly backup mode
- No external switches needed
- Retention of critical data at minimum energy and cost

But why?
Integrated Operational Amplifiers
Operational Amplifiers

OpAmp Highlights

• 3 rail-to-rail OPAMPs integrated
• Inputs from pin, DAC or OPAMPs
• Outputs to pin, ADC or OPAMPs
• Various configuration modes
 • Programmable gain
 • Inverting / non-inverting
 • Cascading
 • +++
• 6.1 MHz gain bandwidth product
• 13 – 400 µA active current
• 65 degree phase margin
• 1 mV offset voltage

7-Mar-13

www.energymicro.com... the world’s most energy friendly microcontrollers and radios
OPAMPs – Key Benefits

- Save space
- Save cost

But why?
Low Energy Sensor Interface
Low Energy Sensor Interface (LESENSE)

LESENSE Highlights
• Autonomous sensing in EM2/EM3 (w/ ULFRCO)
• LESENSE with central control logic
 • ACMP for sensor input
 • DAC for reference generation
• Measure up to 16 sensors
• Programmable state machine
 • 16 states, 4 input channels
 • Can do quadrature decoding
• Interrupt/PRS on sensor events

~1µA!!

Wake-on-Touch
LESENSE - Low Energy Sensor interface

Analog events
Capacitive, inductive or resistive sensors

Generic MCU
Wake-up periodically to detect the events
LESENSE - Low Energy Sensor interface

Analog events
Capacitive, inductive or resistive sensors

Generic MCU
Wake-up periodically to detect the events

Gecko MCU
Wake-up only on the events
LESENSE - Low Energy Sensor interface

Analog events
Capacitive, inductive or resistive sensors

Generic MCU
Wake-up periodically to detect the events

Gecko MCU
Wake-up only on the events

Gecko MCU
Conditional wake-up (e.g. on every 2nd event)
Capacitive Measurement

LESENSE

300 Compare

Counter

ACMP

Interrupt!

Compare

Counter

ACMP

Interrupt!
LESENSE – Capacitive Example

- Analog Comparators measure one input at a time
- Counts oscillations for a given time period
- Touched sensor gives lower frequency
- Performs action if threshold is breached
 - Wake-up
 - State-machine input
 - Buffer results
- **1.2 µA @ 20 Hz**
LESENSE – Resistive Example

- Capacitor charged to VDD during excitation
- Sample ACMP output after a programmable time
 - Wake-up
 - Buffer results
 - State Machine input
- Adjustable time period before sampling

ACMP trigger level

VDD

VSS

Sample
LESENSE – Inductive Example

- DAC drives common level
- Excitation pulses individual lines low
- Oscillations damped faster when close to metal
- LESENSE counts the number of times the oscillation breaches the ACMP threshold (red)
- Action if lower than compare value
 - Wake-up
 - State machine input
 - Buffer results
- Autonomous in Deep Sleep
 - 1.4 µA @ 20 Hz
Autonomous «slide-to-unlock»

- Use LESENSE state machine to detect order of capasitive button press
- Stay in Deep Sleep until right order is detected
- Reduce energy impact of frequent unintentional touches
LESENSE—Key Benefits

- Save energy by staying in Deep Sleep while monitoring sensors
- Save cost of expensive dedicated sensor ICs with wake-up functionality

But why?
EFM32 – packed with features

CPU and Memory
- ARM Cortex-M processor
- Memory Protection Unit
- Embedded Trace Macrocell
- Flash Program Memory
- RAM Memory
- Debug Interface
- DMA

Clock Management
- High Freq Crystal Osc
- High Freq RC Osc
- Low Freq Crystal Osc
- Low Freq RC Osc
- Ultra Low Freq RC Osc
- Auxiliary RC Osc

Energy Management
- Voltage Regulator
- Voltage Comparator
- Brown-out Detector
- Power-on Reset
- Back-up Power Domain

Serial Interfaces
- USART
- UART
- Low Energy UART
- I2C
- USB

I/O Ports
- External Bus Interface
- TFT Driver
- General Purpose I/O
- External Interrupt
- GPIO Wake-up
- Pin Reset

Timers and Triggers
- Timer/Counter
- Low Energy Timer
- Real Time Counter
- Pulse Counter
- Watchdog Timer
- Backup RTC

Analog Modules
- ADC
- DAC
- LCD Controller
- Analog Comparator

Security
- AES Accelerator

32-bit bus
Peripheral Reflex System

7-Mar-13
www.energymicro.com — the world’s most energy friendly microcontrollers and radios
Simplicity Studio

- Easily access all free software tools
- Always the latest updates and news
The energyAware Profiler is an energy debugging tool that use Advanced Energy Monitoring (AEM) data available from the development tools to perform real-time profiling and debugging of the associated object code.
Some interesting Appnotes

- AN047 Interfacing Graphical Displays
 - FREE Segger emWin Graphics library
- AN048 Energy Optimized Display Application
 - uA Sharp Memory display application using emWin
- AN0052 USB MSD Host Bootloader
- AN0053 IR Sensor Monitoring Using LESENSE
 - Low Energy operation of Photointerrupter and Prox Sensor
- AN0054 Smart Phone Audio Jack Interface
 - EH application with audio jack communication
- AN0055 Speex Codec
 - On board Differential A/D and DAC
Some interesting Technologies

- **Wireless**
 - 802.11 partnerships with Atheros, Digi, RTX
 - BTLE
 - Have our own BTLE Stack that can be used on our EFM32 with an external radio.
 - BT v2.1, BT Dual Mode
 - Searan dotstack

- **E-Paper**
 - PDI Eval Kits: 4.41” and Shelf Label Retronix Kit
 - Create boost converter with PRS System

- **RTOS**
 - Keil RTX RTOS allows RTC to be used in EM2
 - Pumpkin Salvo RTOS allows use of EM modes also
 - uCOS2/3, FreeRTOS, CMX, etc
So you say you want a FREE Development Environment?

- Check out AN0023 ‘Configuring Eclipse & GNU/GCC Compiler, ask for detailed Installation Guide!!
 - Eclipse is a FREE Open Source Project Manager/IDE. Eclipse front-end is commonly used even in ‘Pay for’ IDE’s.
 http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers-includes-incubating-components/indigosr2
 - Codesourcery is the GNU toolchain containing a FREE gcc compiler/linker and gdb debugger.
 - Debugger: Your STK or DK is your FREE J-LINK Debugger!! This can be used with your own Target Board. Refer to the link below.

7-Mar-13
Software libraries

- Provided free of charge with our chips
- Open source
- Production quality (but no warranty given)
- Supported by our technical support team
- CMSIS register definitions / HAL
- emlib driver library
- Protocol stacks (USB, RF, etc)
- GUI library
USB stack

- Free stack with source available on web
- Includes:
 - Device – base, MSD, HID, CDC, VUD
 - Host – base, MSD, HID, HUB
- The Giant Gecko with USB stack has passed the USB-IF compliance certification
- Partner with commercial vendors (SEGGER emUSB and Jungo USBware)
GUI library

- Free stack available – SEGGER emWin
- Includes:
 - emWin Color basic package
 - emWin GUIDRV Lin
 - Window manager
 - Memory device module
 - Anti-aliasing module
- Windows PC tools:
 - Bitmap converter
 - Font converter (supports also Asian languages)
 - Simulation environment
 - GUI-Builder
Full featured hardware tools

<table>
<thead>
<tr>
<th></th>
<th>$69</th>
<th>$69</th>
<th>$299</th>
<th>$349</th>
<th>$349</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>EFM32G890F128</td>
<td>EFM32TG840F32</td>
<td>EFM32G890F128, EFM32G290F128</td>
<td>EFM32LG990F256</td>
<td>EFM32GG990F1024</td>
</tr>
<tr>
<td>Advanced Energy Monitoring</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>USB J-Link Debugger</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Plug-in MCU and prototyping board</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Onboard J-Trace</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Screen</td>
<td>4x40 segment LCD</td>
<td>8x20 segment LCD (EFM32G890-DK only)</td>
<td>4x40 segment LCD</td>
<td>320x240 RGB TFT</td>
<td>320x240 RGB TFT</td>
</tr>
</tbody>
</table>

Glossary:
- **Device**
- **Advanced Energy Monitoring**
- **USB J-Link Debugger**
- **Plug-in MCU and prototyping board**
- **Onboard J-Trace**
- **Screen**

Prices:
- **$69**
- **$299**
- **$349**

Visit www.energymicro.com for more details.
www.energymicro.com
EFR Update
EFR4D-STK6500

- Available at launch, Q4 2013
- Familiar features: AEM and on-board J-Link debugger
- Modular approach – the same main board will support all frequency bands, with different RF modules
- 128x128 pixel SHARP Memory LCD
- Connects to any Gecko MCU STK, allowing two-chip configurations
Later kits

- USB stick
- Wireless sensor nodes
- TBD
Protocol availability

At Sample time:
802.15.4-2006
BTLE – Licensed WiCentric BTLE Stack!!
SimpliPHY

Later:
More to come...
Protocols details - SimpliPHY

SimpliPHY is a very simple proprietary protocol with a very small footprint. Ideal for companies that want:

- Simple solution
- Make their own protocol
- Low complexity and footprint
- Full source code

Send, receive, set channel, energy detect, Clear channel Assessment.
Protocols details – Bluetooth Low Energy

Stack will be provided by a partner – no license cost for customers.
Stack is already certified and stable.

Profiles and services that will be supported at launch time (minimum list):

- Alert Notification Profile
- Blood Pressure Profile
- Find Me Profile
- Heart Rate Profile
- Phone Alert Status Profile
- Proximity Profile
- Time Profile
- Battery Service
- Blood Pressure Service
- Device Information Service
- Heart Rate Service
- Immediate Alert Service
- Link Loss Service
- TX Power Service
- Weight Scale
- Blood Glucose
- Proprietary Profiles
Protocols details – 802.15.4

- Non Beacon Mode
- Beacon Mode
- Security (802.15.4-2006)
- 868/915 MHZ
- 2.4 GHZ

All features required for running ZigBee PRO, ZigBee RF4CE, ZigBee IP/6Lowpan protocols.
Using EFM32 for wireless applications

EFM32 is an ideal host processor paired together with a wireless module or transceiver.

Example: Several companies now supply low Power WIFI modules that contain an EFM32 MCU. Example a module from RTX:
Additional EFM32 Slides
Core and Peripherals
Clocks and Oscillators

HFPER
- 1,7,11,14,21,28 MHz HFRCO
- 4-32/48 MHz HFXO

HFCORE
- HFCLK
- DIV 1-512
- CPU
- Bus System

LFA
- 32 kHz LFRCO
- LFACLK
- DIV 1-512
- LETIMER
- LCD
- RTC
- PCNT
- LESENSE
- LEUART0

LFB
- 32.768 kHz LFXO
- LFBCLK
- DIV 1-512
- LEUART1

14 MHz AUXHFRCO
- LESENSE
- Flash Write
- Trace Out
- 1 kHz ULFRC
- WDOG

50 nA
Universal Serial Bus (USB)

USB Highlights
- USB 2.0 compliant
- Support for USB Device, Host and On-The-Go (OTG)
- Full speed (12 Mbit/s)
- 14 endpoints (2 KB buffers)
- Integrated 3.3V regulator (up to 100 mA)
- Dedicated DMA for USB
- Pre-programmed USB device bootloader
- Free stack in Simplicity Studio
 - Mass Storage Host/Device
 - Human Interface Host/Device
 - Vendor Unique Device
 - Communication Class Device (USB-to-RS232)
Direct Memory Access Controller

DMA Highlights

- Transfer between Flash/RAM and peripherals
- 8 channel DMA
 - 12 channels in LG/GG/WG
- Multiple operational modes
 - Scatter-Gather, Ping-pong
- Reduce workload of CPU
- Reduce latency

- **8.12uA/MHz**
External Bus Interface

EBI Highlights

• Standard EBI (Gecko)
 • External SRAM
 • Displays (8080 interface)
 • Memory mapped
• Giant/Leopard/Wonder Gecko EBI
 • Gecko EBI compatible
 • Independent timing for 4 CS
 • 32-bit data access
 • Code execution
 • 28 address lines and 16 data lines
• NAND Flash support
Low Energy Timer

Low Energy Timer Highlights
• 16-bit counter, 8-bit repeat
• Clocked from LFXO/LFRCO/ULFRCO
• Waveform generation
• Duty cycle control of external components/sensors
• Available down to Stop Mode (EM3)
• 150nA
Real Time Counter

RTC Highlights (100nA)

- Real Time Counter
 - 24-bit counter
 - 2 compare values
 - Clocked from LFXO/LFRCO/ULFRCO
 - Available in EM0 – EM3
- Backup Real Time Counter (LG/GG/WG)
 - 32-bit counter
 - Clocked from LFXO/LFRCO/ULFRCO
 - Wake-up on LFXO failure
 - Available in EM0 - EM4
 - Can run from backup power
Analog Comparators

ACMP Highlights
• Up to 2 analog comparators
• 8 input pins per comparator
• Programmable speed/current
 • 4.5 µs / 0.1 µA
 • 0.2 µs / 2 µA
• Capacitive Sense mode
• Internal references
Digital to Analog Converter

DAC Highlights
- 12-bit resolution
- 200 µA @ 500 ksp
- 38 µA @ 1 ksp
- 2 independent channels
- Continuous/sample&hold
- Internal references
- Sine generation mode
- PRS/DMA Trigger
Power Supply Supervision

Power Supervision Highlights
- 1.85 V to 3.8 V
- Power-on Reset
 - Always enabled
- Brown-out Detector
 - Enabled in EM0 – EM3
 - Available in EM4 on LG/GG/WG
- Voltage/Battery Supply Comparator
 - Programmable trigger level
 - Interrupt trigger
- 100nA
High Frequency Timer/Counters

Timer/Counter Highlights

- Up to 3 16-bit Timers
 - Up, Down, Up/Down Modes
 - Quadrature Decoder
 - 3 Compare/Capture/PWM
 - Dead-Time Insertion on TIMER0
- Systick Timer
 - Integrated in Cortex-M
- OS Timer
Pulse Counter

Pulse Counter Highlights
• Up to 3 8/16-bit Pulse Counters included
• Counts incoming rising or falling edges
• Asynchronous quadrature decoder
 • Interrupt on direction change
• Available down to Stop Mode (EM3)
SPI and UART

SPI and UART Highlights

• Up to 3 USARTs
 • UART/SPI (master/slave)
 • IrDA
 • SmartCards (ISO7816)
 • 8 Mbit/s UART, 16 Mbit/s SPI master
 • I²S support (ZG, TG, LG, GG and WG)
• Up to 2 UARTs
 • Subset of USART with support for asynchronous communication
I²C Highlights
• Up to 2 I²C peripherals included
• I²C and SMBus support
• Data rates up to 1 MBit/s
• Hardware address recognition in EM3
General Purpose Input/Output

GPIO Highlights
• Up to 93 GPIO pins
• Configurable
 • Pull up / down
 • Input/Output enable
 • Drive strength (0.5 / 2 / 6 / 20 mA)
 • Input filter
• 16 pin interrupts
• Alternate functions
• Reset trigger from GPIO in EM4
 • ZG, TG, LG, GG and WG
Debug/Programming

Debug/Programming Highlights
- 2-wire Serial Wire debug interface
 - Debugging/Programming
- 1-wire Serial Wire Viewer output
 - printf-style debug information
 - PC sampling
- 5-wire Embedded Trace Macrocell (LG/GG/WG)
 - Instruction and Data Trace
- Debug lock for firmware protection
- Pre-programmed Bootloader
 - UART in all EFM32s
 - UART+USB in parts with USB
ARM Cortex-M4F

Cortex-M4F highlights

• High performance, low power platform
 • 1.25 DMIPS/MHz
 • 2.19 CoreMark/MHz
• Digital Signal Processing instructions
 • Single cycle 32-bit MAC
 • 8, 16-bit SIMD arithmetic
 • Single precision FPU
• Scalability for future products
• Software/tool compatible with Cortex-M
• Memory Protection Unit
• Embedded Trace Macrocell